THE LHC POMERON - will it end the

"Crisis in Fundamental Physics"?*

As I described in my talk last year -

- The uniquely unitary Critical Pomeron is uniquely related to QUD* a massless SU(5) theory with a bound-state S-Matrix that could be
 that of the Standard Model (SM). (See also arXiv:0708.1306.)

 $[\]stackrel{*}{=} Quantum \ Uno/Unification/Unitary/Underlying \ Dynamics$

 $^{^*}$ Presented at the 5th Manchester Forward Physics Workshop , Dec. 2007.

I will outline the multi-regge argument that {perhaps}

QUD \rightarrow the SM high-energy S-Matrix.

The full program is enormously challenging & badly needs the extra interest /participation that LHC encouragement would bring.

My main focus will be on surrounding motivational issues & consequences. I will only briefly review the \mathbb{P} physics & will not discuss at all, related Cosmic Ray & Tevatron evidence. As I will describe,

- not only may QUD solve existing SM puzzles
 (& cosmology problems it has zero vacuum energy),
- because the {IR-anomaly based} physics is conceptually & philosophically radical wrt the current theory paradigm,
- it may also provide a way out of the percieved "crisis" in the current formulation of theory.

Arguments by leading theorists (Weinberg, Susskind, & others) have led to what Smolin calls "A Crisis in Fundamental Physics" - epitomized by asking, based on the "string-theory landscape",

"With an infinity of universes proposed, and more than 10^{400} theories, is experimental proof of physical laws still possible?"

A retreat to the "anthropic principle" - physical parameters are determined by the existence of life - is a common response.

Adding to the bewilderment (says Smolin), in the 35 years since the formulation of the SM, all proposals for "new physics"

- including GUTS, supersymmetry, technicolor, string theory & (most recently) extra dimensions ...

have failed to make any contact with experiment - even while introducing a wide variety of interactions,* particles, & new parameters.

^{*}The last discovery of a new interaction >> 35 years ago !!

Theoretically, there are far too many (ill-defined) candidate new theories, while experimentally there are none!

Searching for new theories via the symmetry-based aesthetics championed by much of the theory community has not found a focus, although there has been no shortage of **imagination!!**

Doubling the number of particles to achieve supersymmetry,
 when not a single partner has been seen, & adding extra dimensions that "curl up" out of our sight both seem far-fetched* to "real world" theorists, as well as many experimenters.

There is a much concern that a major change may be needed in the paradigm underlying current theory.

^{*}If neither appears at the LHC, this will be the historical perspective.

In 1999, David Gross said (wrt QCD & the S-Matrix bootstrap program)

"We now know that there are an infinite number of consistent S-Matrices that satisfy all the sacred principles (particularly unitarity). One can take any non-abelian gauge theory, with any gauge group, and many sets of fermions ..."

=> Unitarity is irrelevant !! This is "breathtakingly misleading".

 $\{Bill\ Clinton\}$

- 1. Gauge theory S-Matrices can only be calculated perturbatively.
- 2. In D=4 the perturbation expansion for every field (& string) theory is wildly divergent &, most likely, can not be summed.
- 3. There is no non-perturbative formulation of any theory which can derive scattering amplitudes let alone discuss unitarity.

Gross also said that the regge region is merely*

"an interesting, unsolved, & complicated problem for QCD" that had been "unduly emphasized".

^{*}Experimenters working on diffraction have lived with this attitude for a long time.

If I am right, the widely held views described by Gross could not be further from the truth.

- Regge-region unitarity is deeply related to other fundamental problems in the formulation of QCD & is central in the construction of a fully unitary gauge theory.
- The viewpoint that solving difficult problems in QCD is not fundamental for going beyond the SM may be a major factor in producing the "theory crisis".
- That progress will come via inspired guesses for the missing {thought to necessarily be} short-distance, physics - with experimental verification coming from related rare processes - has yet to be confirmed*. In fact,

large-distance physics (QCD) is not well understood.

^{*} There is **NO** historical precedent.

QCD PROBLEMS

There are three interconnected, unresolved, problems for the standard formulation of QCD.

1. The Spectrum of States -

- The conventional wisdom is that the physical states are determined by color confinement & (when quarks are involved) chiral symmetry breaking. Neither principle has been proved, but there is no experimental violation of either.
- BUT, if color confinement is the only feature constraining the field theory degrees of freedom appearing in physical states, then glueballs should be everywhere.

NOT A SINGLE GLUEBALL HAS BEEN SEEN (unambiguously) IN ANY EXPERIMENT.

Apparently, there is a major limitation on the degrees of freedom.

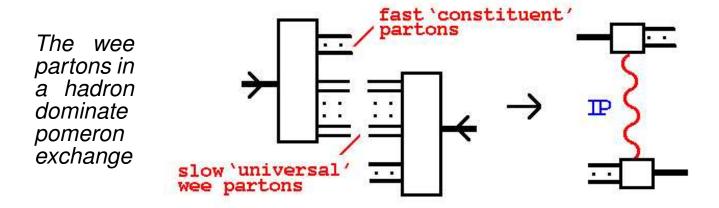
Physical states must contain quarks ???

2. The Parton Model -

• Factorization theorems say that leading-twist perturbation theory is consistent with the parton model. However, even though it is the basis of all pertubative applications, there is

no derivation of the parton model in QCD.

• A true parton model, as originally envisaged by Feynman, requires that


infinite momentum hadrons have quark/gluon wave functions.

 This is a very intricate requirement that has no reason to be true if there is a non-trivial, confining, vacuum *

^{*}although it is probably essential for asymptotic freedom to be maximally applicable.

For hadrons to have well-defined $\{\infty-momentum\}$ wave-functions -

- "wee partons" (with finite momentum in the ∞ -momentum frame) must carry the "vacuum properties" of the theory.
- > hadrons have a "universal" wee parton component.

For wee partons to be universal, the ${\mathbb P}$ must have the factorization properties of a Regge Pole.

3. The Pomeron -

A priori, large $k_{\perp} \to$ the perturbative BFKL ${\mathbb P}$ + an odderon.

- 1. There is no unambiguous evidence for the BFKL \mathbb{P} & zero evidence for the odderon.
- 2. The BFKL ℙ violates s- & t-channel unitarity, & higher-order corrections very likely make the problem worse.
- 3. Because the **BFKL** \mathbb{P} is not a regge pole
 - Wee parton factorization is absent.
 - Reggeon Field Theory (RFT) can not be used.

Experimentally, at small k_{\perp} , the \mathbb{P} couples directly to quarks (c.f. total cross-sections) & has the factorization properties of a regge pole.

Apparently, BFKL gluons are absent in physical amplitudes & quarks are the essential element of the states.

Uniquely, the RFT Critical \mathbb{P} satisfies both s- & t-channel multiparticle unitarity & it is built up as a regge pole + interactions.

To obtain the Critical ℙ via gauge theory reggeon diagrams, is "highly non-trivial" -

- a very special version of QCD (QCD_S) is required, which then
- has to be embedded in a unique larger theory QUD.

Alao, novel dynamics is involved* - relating to the controversy (30 years ago) wrt a unitary supercritical RFT phase. In this phase a

" \mathbb{P} condensate" is produced by wee partons. This is the key to the Critical \mathbb{P} & "universal wee partons" - in both QCD_S & QUD.

First, the basic properties of QUD -

^{*}Involving massless fermion anomalies that exploit the Gribov quantization ambiguity wrt Gauss's law.

THE PATH TO QUD

- 1. Initially, supercritical RFT is matched with SU(3) color & the Critical \mathbb{P} is shown to occur when asymptotic freedom is "saturated" \longleftrightarrow
 - 6 color triplet quarks + 2 color sextet quarks \leftrightarrow "QCD $_S$ "
- 2. $W^{\pm} \& Z^{0}$ eat the "sextet pions" & EW symmetry breaking occurs without any new interaction (that the EW scale is the QCD sextet chiral scale is consistent with Casimir scaling !!)
- 3. To cancel the EW anomaly & to generate masses, the sextet sector is embedded in a left-handed unified theory.
- 4. The sextet sector + asymptotic freedom + anomaly cancelation uniquely requires SU(5) gauge theory & the fermion representation

$$\mathbf{5} + \mathbf{15} + \mathbf{40} + \mathbf{45}^* \quad \leftrightarrow \quad QUD$$

QUD contains **QCD**_S & under $SU(3) \otimes SU(2) \otimes U(1) \rightarrow$

$$\begin{split} & 5 \! = \! (3,1,-\frac{1}{3}))^{\left\{3\right\}} \! + \! (1,2,\frac{1}{2})^{\left\{2\right\}} \; , \\ & 15 \! = \! (1,3,1) \! + \! (3,2,\frac{1}{6})^{\left\{1\right\}} \! + \! (6,1,-\frac{2}{3}) \; , \\ & 40 \! = \! (1,2,-\frac{3}{2})^{\left\{3\right\}} \! + \! (3,2,\frac{1}{6})^{\left\{2\right\}} \! + \! (3^*,1,-\frac{2}{3}) + (3^*,3,-\frac{2}{3}) \! + \! (6^*,2,\frac{1}{6}) \! + \! (8,1,1) \; , \\ & 45^* \! = \! (1,2,-\frac{1}{2})^{\left\{1\right\}} \! + \! (3^*,1,\frac{1}{3}) \! + \! (3^*,3,\frac{1}{3}) \! + \! (3,1,-\frac{4}{3}) \! + \! (3,2,\frac{7}{6}))^{\left\{3\right\}} \! + \! (6,1,\frac{1}{3}) \! + \! (8,2,-\frac{1}{2}) \end{split}$$

The triplet quark and lepton sectors $\{not \ asked \ for \ !\}$ are amazingly close to the SM !! There are 3 "generations", $\{1\},\{2\},\{3\}$. The SU(2)xU(1) quantum numbers are not quite right, but the lepton anomaly is correct & there are 3 sets of q/\bar{q} pairs with charges $\pm \frac{2}{3} \ \& \pm \frac{1}{3}$.

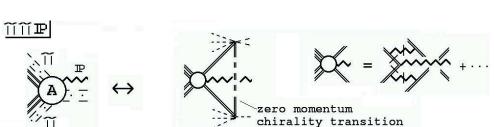
Beyond the SM generations, there is only

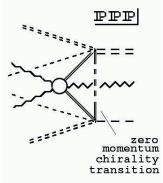
- 1. A sextet quark sector → EW symmetry breaking & dark matter!
- 2. A "lepton-like" octet quark sector $\{embedded\ in\ bound\ states\}$ \rightarrow SU(5) invariant leptons & hadrons in SM generations.
- 3. A pair of exotically charged quarks.

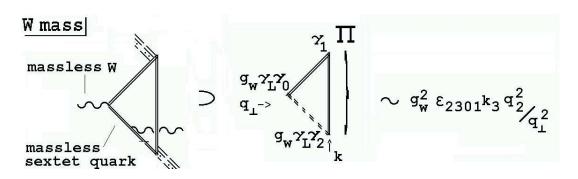
Nothing else !!

The Crucial Dynamics selects a very limited $\{anomalous\}$ subset of the gauge field degrees of freedom. The \mathbb{P} condensate is produced by

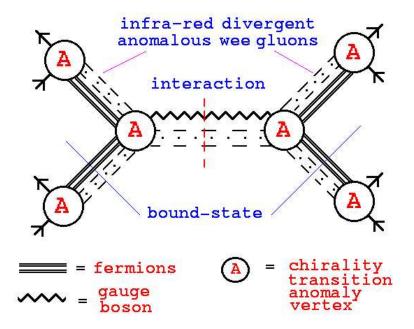

wee gluon reggeon divergences coupled via reduced fermion loops that contain IR anomalies due to zero momentum chirality transitions {cf. condensates}.


- The anomalies are dependent on the symmetry restoration & cutoff removal procedure & occur only in the S-Matrix.
- All fermions must be massless & there must be
- an IR fixed-point (← max no. of fermions).


In QCD_S, a vector theory, the divergences produce a spectrum with confinement & chiral symmetry, plus color parity breaking for the \mathbb{P} .


Remarkably, in QUD, which is vector-like only wrt SU(3)xU(1), the anomaly divergences reproduce the interactions of the SM.

Reggeon interaction anomalies are produced when massless fermions in large loops are placed on-shell by a multi-regge limit, e.g.



Very briefly -

∞-momentum bound states & interactions are constructed similarly in QCD_S and QUD - via multi-regge amplitudes containing IR divergent gauge bosons coupled to anomalies.

Restoring the gauge symmetry **in steps** & extracting anomaly divergences -

The "simplest" amplitude

bound-states appear first as Goldstone boson "anomaly poles" formed as SU(2) color zero combinations of fermions in a "universal anomalous wee gluon" condensate *.

interactions are color zero combinations of a finite transverse momentum gauge boson in the same wee gluon condensate *.

^{*}As the \mathbb{P} becomes critical, via SU(3) color, the anomalous wee gluons ($\longleftrightarrow \mathbb{P}$ condensate) become dynamical.

QCD_S - States & Interactions

The physical states are

- 1. triplet mesons & nucleons
- 2. sextet "pions" & "nucleons" ($P_6 \& N_6$)
- 3. no hybrid sextet/triplet quark states
- 4. no glueballs.

Consistent with, but much less than, confinement & chiral symmetry breaking.

The sextet pions are eaten by $W^{\pm} \ \& \ Z^{0} \ \&$ so the only new states are sextet nucleons. The N_{6} will be stable & dominate UHE x-sections

→ Dark Matter !!

The interaction is the Critical $\mathbb{P}=>$ the parton model, no BFKL pomeron, & no odderon.

Compared to conventional QCD, the states are fewer & the interaction simpler - in agreement with experiment !!

QUD - States & Interactions (briefly & very preliminary)

Parity violation by fermion loops exponentiates all anomaly divergences involving left-handed reggeon couplings \Longrightarrow

Anomalies → SU(3) COLOR SINGLET strong interaction !!

Wee gluon anomaly interactions give **left-handed** W^{\pm} & Z^{0} exchanges a mass $(\leftarrow mixing with sextet pions).$

The lepton-like octet quarks produce SU(5) invariance.

- Leptons are bound states of elementary leptons & "octet pions" (i.e. large $(k_{\perp}, \pm E)$ octet pairs) \rightarrow Standard Model generations.
- hadrons form similarly & EW anomaly \implies (?) 3 generations.
- SU(2) $_L \otimes$ U(1) appears at low k_\perp (via sextet flavor).
- Octet SU(3) reality => octet π 's have no \mathbb{P} coupling => leptons have no strong interaction & no IR SU(3) mass generation.
 - \rightarrow (??) interactions & states of the Standard Model.

That the anomaly-dominated bound-state
S-Matrix of a very small coupling, massless,
fixed-point, field theory is the origin of the
Standard Model is a radical proposal that could
have many desirable consequences.

It could also be the change in paradigm needed to end the

"crisis in fundamental physics".

If my arguments can be followed through -

- 1. QUD is self-contained with only SM Interactions !!
- 2. The only new physics is the strong interaction sextet sector giving EW symmetry breaking, dark matter & unification without supersymmetry !!
- 3. Parity conservation of the strong interaction & parity violation of the weak interaction are naturally explained.
- 4. No off-shell amplitudes & no Higgs field => symmetries & masses are bound-state S-Matrix properties. (Anomaly interactions mix the reggeon states &, presumably, introduce parameters.)
- 5. Color factors produce a wide range of scales & masses that could produce the SM spectrum there is no conflicting symmetry.
- 6. Small neutrino masses should be due to the underlying small coupling.
- 7. There is no proton decay, but the experimentally attractive SU(5) Weinberg angle should hold!
- 8. Because QUD is an asymptotically free, massless, fixed-point theory,

it has no vacuum energy & would induce Einstein gravity with zero cosmological constant (Holdom).

What Should be Seen at the LHC?

There will be obvious large cross-sections. Most immediately -

- multiple vector boson & jet x-sections much, much, larger \rightarrow EW scale $< p_{\perp} >$. But, black holes, sphalerons ... ???
- $N_6 \bar{N}_6$ pair production {dark matter} with $m_{N_6} \sim 500~GeV$?

 But, missing $E_T \sim 500GeV$ will be common & the low energy N_6 hadronic x-section (in a calorimeter) is probably small.
- $P_6\bar{P}_6$ pair production (if the P_6 is not too unstable). But, is a massive charged particle, with a large production x-section direct evidence for a sextet sector ??

The double \mathbb{P} x-section could provide the most definitive early evidence for the sextet sector.

- With the \mathbb{P} 's detected via Roman pots, the environment is clean.
- W&Z pairs will be produced in the double $\mathbb P$ x-section via sextet pion anomaly poles. {As pion pairs dominate the double $\mathbb P$ x-section at low mass, so W&Z pair production will dominate the x-section at the EW mass scale.}
- When $|k_{\perp}|$ is EW scale, double \mathbb{P} W&Z pairs will give jet x-sections that, at large k_{\perp} , are comparable with the non-diffractive jet x-sections predicted by standard QCD.
- The $\{\mathbb{P} W^+W^-\mathbb{P}\}$ & $\{\mathbb{P} Z^0Z^0\mathbb{P}\}$ vertices will vary slowly with k_{\perp} , but hadron/ \mathbb{P} vertices have strong k_{\perp} -dependence
 - \implies an extremely large x-section at small t.

- In the low luminosity running, the "extremely large x-section" could be detected by TOTEM/CMS
- There could be spectacular events in which protons are tagged & only large E_T leptons are seen in the central detector.
- FP420 will take over during the high luminosity running & should surely see the enhanced x-section if it is present !!
- With the planned parameters for FP420, the W&Z pair x-section will overwhelm all other physics.

A large double ${\mathbb P}$ x-section for W&Z pairs

=> longitudinal components of W&Z have direct strong interactions => existence of the sextet sector !!!

After \mathbb{P} , W/Z, & jet physics has established that sextet quark physics is discovered, the search for "Dark Matter" will become all important.

The x-section for double \mathbb{P} production of $\{\text{stable}\}\ N_6N_6$ pairs could be large enough to be seen.

- Tagged protons => a very massive $\{\sim 1 \ TeV\}$ state was produced.
- No charged particles are seen in any of the detectors.
- The low energy N_6 hadronic x-section will, probably, be small but some hadronic activity may be seen in the central calorimeter
- Charged lepton comparison would allow a separation wrt the multiple Z^0 production of neutrinos.

If the P_6 is relatively stable, & not too different in mass $\{ which \ I \ think \ should \ be \ the \ case \}$, it would be much simpler to first detect $P_6 \bar{P}_6$ pairs